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A N  IMPROVED FIRST-ORDER 
PERTURBATION THEORY OF SIMPLE 
FLUIDS USING HIGH TEMPERATURE 

APPROXIMATION AND RANDOM 
PHASE APPROXIMATION 

K.  SHUKLA* 

In this paper, we habe  examined accuracy of ;in improved form of the first-order 
perturbation theory of simple fluids. Theory consists of the first-order perturbation 
theory of high temperature approximation and the rundoin phase approximation. Inclu- 
sion of the random phase approximation enhances applicability of the perturbation 
theory t o  much wider ranges of tcmperatiircs and densities. especially to low densities. 
Comparisons are made between theorctical predictions and accurate computer simula- 
tion results for pi-essure, residual Helmholtz free energy, residual internal energy and 
vapor/liquid phase equilibria of Lcnnard-Jonch fluids. I n  general, theoretical predictions 
are in very good agreement with simulation results. The random phase approximation 
is responsible for predicting accurate Gibbs ensemble Monte Cnrlo simulation results 
for- v;ipor!liquid phnse equilibria using the same theory in both vapor a n d  liquid phases. 

1. INTRODUCTION 

In recent years, there has been renewed interest in accurately calculat- 
ing thermodynamic properties and phase equilibria of simple fluids 
because of their application as the reference system i n  perturbation 
theories of molecular fluids and fluid mixtures [I-41, and also in the 
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18 K .  S H U K L A  

theory of associating fluids [S, 61. They are often used to describe 
thermodynamic properties and structures of molecular fluids in an 
etrective way. Among the various theoretical approaches now available 
[71, perturbation theory is one of the most accurate predictive methods 
for calculating thermodynamic properties of fluids and fluid mixtures. 

Perturbation theory approach is based on the premise that the local 
structure in dense fluids is determined primarily by strong, short-range 
repulsive forces and that the structure is only slightly modified by weak, 
long-range attractive forces. Therefore, i n  perturbation theories the 
hard sphere fluid is taken as the reference and the weak attractive forces 
are taken as the perturbation. This approach has been exploited in 
different forms of perturbation theories of simple fluids [8- 141. 

One of the most reliable forins of the first-order perturbation theory 
of simple fluids was presented by Verlet and Weis [ 111. In this theory, 
the Lennard-Jones (LJ) pair potential was divided into a reference 
part and a perturbation part using Weeks-Chandler-Andersen (WCA) 
criteria [lo]. Reference part of the Helmholtz free energy was repre- 
sented by the hard sphere fluid plus a first order contribution to the 
free energy of the reference fluid, which contains blip-integral. Pertur- 
bation part of the free energy was represented by the first-order term 
using high-temperature approximation [lo]. However, in their calcu- 
lations, Verlet and Weis [ 111 introduced several approximations in 
evaluating properties of the reference fluid and the first-order pertur- 
bation term of the full free energy. Therefore, that theory could not 
predict simulation results for thermodynamic properties accurately. 
Problem became more severe in dealing with nonideal fluid mixtures. 
Later, this theory was modified by Shukla et a/ .  [13]. In this modified 
form of the perturbation theory, properties of the reference fluid and 
the first-order contribution to the free energy were determined more 
accurately. This theory was applied extensively to binary fluid mix- 
tures 1131. However, this theory was also based on the high tempera- 
ture approximation and  involved some approximations in evaluating 
the properties of the reference fluid and also of thc first-order pertur- 
bation term. Consequently, although it offered a significant improvement 
over the previous versions, i t  was not adequate enough to predict 
thermodynamic properties of the pure fluids at all conditions. More- 
over, it could not describe the composition dependence of the excess 
properties in fluid mixtures adequately. 
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T H E K M 0 I)Y N A M I CS I N S I M PI. E FLU I DS 19 

Subsequently, Shukla 1141 presented an improved form of the 
above first-order perturbation theory of fluid mixtures (which can be 
directly applied to the pure fluids), again based on high temperature 
approximation. 111 this theory, properties of the reference fluid were 
determined accurately, and the reference term and the first-order per- 
turbation term i n  the expansion of free energy were a l s o  evaluated 
accurately. The hard sphere diameter was determined in such a way 
that the blipintegral appearing in the first-order reference term van- 
ished identically. Consequently, the reference free energy reduced to 
that of the hard sphere fluid. Properties of the hard sphere fluid were 
then calculated using an accurate equation of state [ 151. Values of the 
hard sphere distribution function inside the core a s  well as outside the 
core were obtained accurately [ 141. This theory, involved no approxi- 
mations in calculating properties of the reference fluid or  those of the 
first-order perturbation term. Extensive comparisons of theoretical 
results with computer simulation results showed that this form of the 
perturbation theory could describe thermodynamic properties of 
several highly nonideal fluid mixtures reliably, and it represented a 
significant improvement over the previous form of the first-order per- 
turbation theory. 

However, such a first-order perturbation theory of high temperature 
approximation is accurate only at high densities and cannot be accurate 
at low densities, becaues at low densities attractive forces play signifi- 
cant role. Therefore, this theory i n  its present form cannot describe 
adequately, f o r  example, the vaporjliquid phase equilibria of the fluids. 

In recent years, computer simulation technique has provided exten- 
sive and accurate results for thermodynamic properties, in general, 
and for the vapor/liquid phase equilibria, in particular, against which 
the accuracy of the theory can be tested unambiguously using the 
same potential function [16--18]. 

Purpose of the present investigation is to further modify the first- 
order perturbation theory of high temperature approximation [ 141 by 
incorporating in i t  the random phase approximation (RPA) [ 191 such 
that ( I )  i t  can describe thermodynamic properties of simple fluids over 
the much wider ranges of temperature and density, especially a t  suffi- 
ciently low densities, and (2)  i t  can predict v;ipor/liquid phase equilib- 
ria of pure fluids accurately using the same theoretical equation in 
both vapor and liquid phases. 
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20 K .  S H U K L A  

The paper is organized as follows. In Section 2, we describe briefly 
the modified perturbation theory and its generalization to low den- 
sities. Section 3 provides details on how to determine thermodynamic 
properties of the reference fluid and that of the full system. In Sec- 
tion 4, we present comparisons of theoretical predictions with simula- 
tion results for the pressure, Helmholtz free energy, internal energy 
and vapor-liquid phase equilibria. Finally, conclusions of our findings 
are presented in Section 5. 

2. THEORY 

In this section, we briefly review the form of intermolecular interac- 
tions and the perturbation theory of high temperature approximation 
together with the random phase approximation. We consider a pure 
fluid, in which intermolecular interactions are represented by the Len- 
nard-Jones (LJ) pair potential given by 

uLJ(r) = 4r-:[(a/r)” - ( ( ~ / r ) ~ ]  (1) 

where (T and E are size and energy parameters in the pair potential, 
respectively, and r is the interatomic separation distance. 

Following the WCA criteria [lo], the pair potential u”’(r) is divided 
into a reference part u’(I‘) and a perturbation part u p ( r ) ,  

uL’(r) + i: for I’ d R ,  
for r > R,,  

u’(r) = 

lor I’ d R,,, 
U ( r )  for r > R ,  

u p ( r )  = ( 3 )  

where R,,, = 2’16 (T is the distance to the minimum in the LJ pair 
potential. 

According to the first-order perturbation theory [ 141, the residual 
Helmholtz free energy of the pure fluid is written as 

A’ Arcs A O , r c s  

t- NkT= NkT NkT 
~~ (4) 
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THERMODYNAMICS IN SIMPLE FLUIDS 21 

where, AO."' is the residual free energy of the reference fluid, and  A' is 
the first-order perturbation contribution to the free energy. N is total 
number of molecules, T i s  temperature, and k being Boltzmann's con- 
stant. We now expand the reference fluid free energy, A'."', about the 
hard sphere fluid using blip-function expansion and obtain 

where, ~ l i S . r e \  is the free energy of hard sphere fluid, and A".' is the 
first-order term of the reference fluid given by 

with the blip-integral, AB, 

In order to make the correction term A".' in eqn. (7) vanish identically 
and make the theory accurate, the hard sphere diameter is determined 
such that 

Consequently, the free energy of the reference fluid (eqn. 5 )  reduces to 
that of the hard sphere fluid 

Now, the first-order term of the free energy, A ' ,  is expressed in  terms 
of two contributions, one arising from the high temperature approxi- 
mation (HTA) 1141 and another arising from the random phase 
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-- 77 K .  S H U K L A  

approximation (RPA) [ 191, 

'ATA +- N k T =  NkT N k T  

where A,!,,,, is given by [14] 

A:,,, - ( 2 n p / k 7 ) {  - c l e x p (  - u 0 ( r ) / k T ) y k ' s ( r ) r 2 d r  
N k T  

and A i p A  is given by [19] 

-- - (2 (2n)3p) -1  u P ( y ) S ( q ) / k T )  - In [l  + u " ( q ) S ( q ) / k T ]  N k T  

In  eqn. (12 ) ,  uP((y) is the fourier transform of uI'(r) 

and S(y) is the fourier transform of gtis(r), 

S(4 )  = 1 + p [yHS(r) - 11 exp( - i q . F ) d F  (14) s 
In the above equations, p (  = N / V )  is number density, I/ is total vol- 
ume, g"'(r) and y"(r) are radial distribution function and background 
correlation function of the hard sphere fluid, respectively. Using 
eqns. (9) and (10) into eqn. (4), the residual Helmholtz free energy of 
the whole system is given by 

A M  ~ H S . r c s  

(15)  ''PA +-+- 
N k T =  N k T  N k T  N k T  

~~ 
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THERMODYNAMICS IN SIMPLE FLUIDS 23 

Eqn. (1  5) defines the free energy of the full system and is an  improved 
form of the perturbation theory, henceforth referred to  as PTH. The 
RPA term in Eqn. ( I S )  is responsible for extending the applicability of 
the PTH over a wider range of temperature and density. When the 
RPA term is ignored, eqn. ( 1  5 )  reduces to the perturbation theory of 
high temperature approximation, here called PTH-HTA. In order to 
achieve sufficient numerical accuracy, calculation of the free energy 
are performed numerically. The advantage of this theory is that i t  can 
be directly extended to mixtures without invoking any mixing rules. 

3. DETERMINATION OF THERMODYNAMIC PROPERTIES 

In order t o  perform perturbation theory calculations, accurate values 
of the properties of the hard sphere fluid are required. Properties of 
the hard sphere fluid are determined using the procedure as described 
in detail elsewhere [14]. Free energy and chemical potential of the 
hard sphere fluid are obtained by an accurate equation of state [ 151. 
Distribution functions of the hard sphere fluid are determined follow- 
ing the accurate method as described before [14]. Using only a single 
parameter in defining the distribution function inside the core ( r < d ) ,  
this method gives the values of distribution functions a t  contact and 
also of y i ” ( r )  and yHs(r), accurately. These values are then used in 
eqns. (7) and (8) to determine the hard sphere diameter numerically. 
Once the properties of hard sphere fluid are known, free energy is 
evaluated from eqn. (15) together with eqns. (9), (1 I )  and  (12). To make 
numerical calculations sufficiently accurate, each 6 1 ” ~  is generated to 
6d at intervals of 0.012SA. Numerical integrations are performed using 
40-point Gauss quadrature formula. In nuinerical integrations, the 
cutoff distance rc is always greater than 6rI. For r,>6d, the usual 
long-range corrections to thermodynamic properties are employed, 
with gHs = 1. In determining the hard sphere diameters, q t i S ( r )  and 
r i iS(r)  are computed to R,,, and d respectively, using an  interval of 

Other thermodynamic quantities are obtained numerically using the 
standard thermodynamic relationships. For example, pressure, P, re- 
sidual internal energy, Ure’, and residual chemical potential pro’, are 

0.01 A. 
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24 K.  S H U K L A  

obtained from the following relations, 

P ( A " ' / N k T )  
p k T -  

-=-T*(J UreS (Arcs /  c ~ T *  N k T )  ),  
N k T  

(A'"/ N k T )  

with the reduced quantities, T* = k T / c  and p* = po3. Numerical dif- 
ferentiations of the free energy are performed using a 7-point Lag- 
range polynomial. 

I t  should be mentioned here that thermodynamic properties of 
simple pure Lennard-Jones fluids can be also determined reliably us- 
ing the recently suggested equations of state [20,21], because they are 
obtained by fitting several parameters to the accurate simulation re- 
sults. These recent equations of state represent a significant improve- 
ment over the previously developed and the most commonly used 
equation of state for the LJ fluid due to Nicolas et al. [22]. However, 
equations of state cannot be used directly to calculate properties of 
the mixtures unless one invokes a mixing rule in the theory. Even 
today, mixing rules based on a rigorous theory are not available, and 
the ad-hoc mixing rules become usually inadequate in describing ther- 
modynamic properties of highly nonideal fluid mixtures. On the other 
hand, the present form of perturbation theory can be directly extended 
to mixtures without any mixing rules. 

4. RESULTS AND DISCUSSION 

In this section, we compare our theoretical predictions with computer 
simulation (CS) results for thermodynamic properties and phase equi- 
libria. We have performed calculations for numerous fluids under 
different conditions. Since it is impossible to present all those results 
here, only a few selected results will be reported under extreme condi- 
tions. The purpose here is to check how accurately PTH can describe 
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simulation results for the pure fluids over a range of temperature and 
density. As mentioned in the previous section, K N  EOS can represent 
simulation results accurately over a wide range of temperature and 
density of the pure fluids. Therefore, in our comparisons below we will 
frequently use KN EOS to represent simulation results. 

Figure 1 presents a comparison between PTH predictions and 
simulation results 1231 f o r  the pressure as a function of density, at a 
subcritical temperature of the pure LJ fluid, T* = kT/i: = 0.928. In 
general, PTH agrees with simulation very well over the entire range of 
the fluid density, / I *  = po3. Also included the figure are values of 
pressure determined from PTH-HTA. I t  is seen that the RPA term 
contributes substantially at low densities ( p *  < 0.7) at  this tempera- 
ture. O u r  results at  other i so therm show that the efiect of the RPA 
term decreases at  higher temperatures, and this contribution becomes 
negligible at sufficiently high densities and high temperatures, as ex- 
pected. At suliiciently low densities, RPA contribution improves the 
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FIGURE 1 
from theory and computer simulation [ 2 3 ] .  

Pressureofpure LJ f u i d s a s a  function ofdensityat :I subcritical temperature 
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26 K .  SHUKLA 

PTH results significantly. Also shown in the figure are values of the 
pressure obtained from KN EOS. As can be seen, both PTH and 
KN EOS agree well with simulation. We note that the effect of RPA is 
not seen at lower densities because we are comparing the total press- 
ure, which is dominated by the ideal term. Thus, RPA effect is con- 
cealed by the ideal contribution to the pressure. 

In order to demonstrate the effect of RPA in PTH more clearly, 
Figure 2 compares the results for residual Helmholtz free energy at a 
slightly higher temperature, kvt; = 1, over a range of density. In this 
comparison, i t  is assumed that simulation results can be given by KN 
EOS, i.e., CS=KN EOS. As can be seen, PTH agrees very well with 
KN EOS. The comparison of PTH-HTA results with PTH results 
show clearly that the RPA contribution is significant at lower den- 
sities (p3 < 0.7), suggesting that the effect of attractive forces is very 
pronounced at low densities. Similar comparisons are made in Fig- 
ures 3 and 4 for pressure and residual internal energy, respectively, 
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FIGURE 2 
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Pressure of pure LJ fluids as a function ofdensity at a subcritical temperature 
from theory and equation of state [21] 
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FIGURE 3 
subcritical temperature from tlicory and cqiiation of state [ 2  I]. 

Residual internal energy of pure 1.J fluids as a function of density at a 
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FIGURE4 
temperatures from theory and computer simulation [24.25]. 

Pressure of pure LJ fluids as a function of density a t  three supercritical 
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considered at kT/t;= 1. In all cases, PTH predictions compare very 
well with KN EOS results. The remaining discrepancy between PTH 
and KN EOS at the intermediate densities in Figures 3 and 4 is the 
result of simulation uncertainty. Even at the supercritical temperature, 
say, kT/E = 1.35, where the fluid lies in the stable condition for all 
densities, PTH-RPA provided a significant improvement over PTH- 
HTA at very low densities. 

So far, we compared PTH predictions with simulation results in the 
subcritical range of the temperature of the pure LJ fluid. In order to 
demonstrate the validity of PTH in supercritical conditions, Figures 5 
and 6, respectively, present comparisons of pressure and residual in- 
ternal energy as a function of density, each at three temperatures, 
kT/r; = 1.35, 1.988 and 2.74. Among these, the first and the last condi- 
tions have been investigated extensively using different theories [7]. 
Overall, theoretical predictions are seen to be in very good agreement 
with simulation results [24, 251 at all temperatures and densities. Even 
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supercritical temperature from theory and computer simulation [24, 251. 

Residual internal energy of pure LJ fluids as a function of density at three 
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FIGURE 6 
a t  a supercritical temperature from theory and equation of state 1211. 

Residual Helmholtz free energy of pure LJ Iluids ;IS :I function of density 

at higher temperatures, PTH can describe accurately the free energy, 
pressure and internal energy over the entire range o f  the fluid density. 
A sample example of such a comparison is presented in Figures 7-9 
for the residual Helmholtz free energy, pressure and residual internal 
energy, considered at  a supercritical temperature k7'!r: = 3. We note 
that at this temperature, k7',/i: = 3,  gas/gas phase equilibria have been 
obtained recently using the Gibbs ensemble Monte Carlo simulation 
[26]. Therefore, this comparison at kT/t; = 3 is important f o r  the the- 
ory to be applied in calculating gas/gas phase equilibria in  binary fluid 
mixtures. 

Calculation of vapor/liquid equilibria using the first-order perturba- 
tion theory based on high temperature approximation has been a 
challenging problem, for such a theory is reliable at high densities 
only. Therefore, one has to use the virial equation of state to calculate 
properties of the vapor phase, and the perturbation theory to deter- 
mine properties o f  the liquid phase. Because of the use of two different 
equations, the calculation of vapor/liquid equilibria of pure fluids 
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FIGURE 7 
at a subcritical temperature from theory and equation of state [21]. 

Residual I-lelmholtz free energy of pure LJ fluids as a function or density 
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FIGURE8 
temperature from theory and equation of state [21]. 

Pressure of pure LJ fluids ;is a function of density a t  a supercritical 
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Residual internal energy of pure L.J fluids ;LS a function of density at .. . 
a supercritical temperature from theory and equation of state [21] 

becomes inconsistent. This inconsistency becomes more pronounced in 
calculating the vapor/liquid equilibria in fluid mixtures. Since the present 
form of perturbation theory is found to be accurate for the entire range of 
the fluid densities, we used the same equation (eqn. ( 1  5)) for calculating 
properties of both vapor and liquid phases. The vapor/liquid equilibria 
were determined by satisfying the usual phase equilibriuin criteria that at 
a given temperature pressure and chemical potential in the two phases 
should be equal. Results for vapor/liquid equilibria of pure LJ fluids are 
presented in Figure 10. PTH predictions are found to be in very good 
agreement with the recent simulation results [18,27], and they also agree 
with the predictions of K N  EOS. These comparisons suggest that PTH 
can be applied to predict thermodynamic properties and phase equilibria 
of fluid mixtures with confidence. 

Because PTH has been found to be reliable over a range of tem- 
perature and density, it would be interesting to compare critical para- 
meters of the pure LJ fluid. Table I contains such a comparison. 
Table I shows that the values of both critical temperature and critical 
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l " ' I " '  I " ' I  
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FIGURE 10 
simulation [IS. 271. 

Vaporiliquid phase equilibria of pure LJ fluid from theory and computer 

TABLE I Critical parameters for the Lennard-Jones fluid 

Propert \' cs K N EOS' J Z G  EOS" P TH 

1.316' 1.339 1.313 1.330 
I.?XI' 

/I<* 0.304' 0.31 I 0.3 10 0.309 
0.3202 

T'* 

Pfl  JC ~ 0.141 0.1'9 0.141 

'Smit [ZS] 
2Panagiotopoulos [ 181 
'Kolafa and Nezbeda [21] 
'Johnson r t  rr l .  1201 

density calculated from PTH lie between those obtained from com- 
puter simulation [18,28] and K N  EOS. The critical pressure of PTH 
also compares very well with that of K N  EOS. 

In order to further demonstrate the reliability of the present theory, 
we finally compare PTH with the recent integral equation theories. 
Table I1 compares results for the pressure obtained from different 
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TABLE I I  
coin pi1 ter siin uI ;I t ioii 

Comparison of PTH with the recent integral equation theories and 

C'S P H N C I '  PHNC'Z' H M S A '  R H N C '  P 7 H  

0.786 0.85 0.99 0.94 1.20 1.01 1.03 
1.15 0.85 2.86 2.71 2.92 2.80 2.87 
2.74 0.55 1.65 1.58 1.62 1.65 I .66 

1 . 1 0  10.17 9.87 10.14 9.92 10.20 
5 0.2 1.17 

0.5 1.87 1.82 1.84 1.86 I .86 
1.279 13.44 13.08 13.45 13.03 13.35 

0.5 1.93 I .93 1.94 1.94 1.95 
1.765 16.68 16.42 16.68 16.35 16.64 

I .0 2.95 2.93 2.95 2.96 3.98 
2.5 16.29 16.23 16.46 16.21 16.44 

A A D %  2.83 3.28 1.49 1.38 

20 0.2 1.27 ~ ~ 

I00 0.2 1.22 ~ 

I .06 
2.90 
1.65 

10.12 
1.17 
1.86 

13.49 
1.27 
I .95 

16.81 
1.22 
2 98 

16.26 

I .43 

+ Results of these theories are reported I-ecently by Kang and Rec 1291. 
PHNC I = I'crturhalive -1iyperncttedhhain based on the Martynov-Sarkisov inte- 
gral equation 
PHNC2 = Perturhative-liyperiietted-ch~lin based oil niodilied Martynov-Sarkisov 
integral equation 
HMSA = Hypcrnetted-chain mean spherical approximation 
KHNC = Reference liypcrnetted-chain theory 

T A B L E  I l l  
corn pi1 t e r si m u 1 ;it 10 n 

Comparison of PTH with the recent integral equation theories and 

LT i / l f l  pU.< 'I& 

CS P H N C l  P H h C Z '  HMSA'  R H N C '  PTH 

0.786 0.85 
1.15 0.85 
2.74 0.55 

1.10 
5 6.2 

0.5 
1.279 

20 0.2 
0.5 
1.765 

100 0.2 
I .0 
2.5 

- 7.70 
-4.93 
- 1.17 
- 1.35 
- 0.20 
- 0.47 

0.44 
- 0.0050 

0.03 
2.65 
0.04 
0.36 
3..30 

-1.71 -7.67 -7.68 -7.68 
-4.96 -4.92 -4.93 -4.93 
-1.18 -1 .17  -1.17 -1.17 
- 1.41 -1.36 - 1.39 - 1.34 

-0.48 -0.48 -0.47 -0.47 
~ 

0.35 0.41 0.34 0.41 

0.03 0.03 0.03 0.03 
2.59 2.65 2.57 2.64 

0.36 0.36 0.36 0.37 
3.29 3.35 3.29 3.35 

~ 

~ ~ 

- 7.74 
- 4.97 
- 1.18 
- 1.36 
- 0.2 1 
- 0.48 

0.41 
- 0.006 

0.03 
2.62 
0.04 
0.37 
3.34 

AAI>%> 3.12 1.18 2.92 1.25 1.90 

' For definition of these theories. see Table I I .  Results for integral cquation theories 
and simulation are from Kang and Ree 1291. 
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recent integral equation theories with simulation. These theories are: 
perturbative-hypernetted-chain based on the Martynov-Sarkiso inte- 
gral equation (PHNCl),  perturbative-hypernetted-chain based on the 
modified Martynov-Sarkiso integral equation (PHNC2), hypernetted- 
chain mean spherical approximation (H MSA) and reference hypernet- 
ted-chain theory (RHNC). Their results are taken from the recent 
study [29]. In general, PTH performs better than PHNCl, PHNC2 
and HMSA, and is almost equivalent to RHNC. Similar comparisons 
are made in Table 111 for internal energy. Again, PTH is very good in 
describing simulation results. 

6. CONCLUSIONS 

In this paper, we have presented a modified form of the first-order hard 
sphere perturbation theory, which consists of the first-order perturba- 
tion theory of high temperature approximation [14] and randon phase 
approximation [19]. The RPA term is responsible in accounting for the 
effect of attractive forces at low densities. As a result, PTH represents a 
significant improvement over PTH-HTA. Our results for pressure, Helm- 
holtz free energy, internal energy and vapor/liquid equilibria show 
that PTH is highly accurate in describing the properties of simple 
fluids from the vicinity of the triple point to the critical point, and also 
in the supercritical conditions. PTH is found to be in full agreement 
with the accurate KN EOS. Comparison of PTH with the recent inte- 
gral equation theories shows that PTH is almost equivalent to RHNC 
theory in describing thermodynamic properties of LJ fluids. 

These comparisons suggest that the modified form of the first-order 
perturbation theory is highly reliable in describing thermodynamic prop- 
erties and vapor/liquid phase equilibria of simple fluids. In our future 
application, this theory will be used to predict thermodynamic properties 
and phase equilibria of fluid mixtures using the same theoretical equation 
in both vapor and liquid phases, without using any mixing rules. 

LIST OF SYMBOLS 

A Helmholtz free energy 
cs Computer simulation 
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EOS 

HTA 
JZG 
K N  
LJ 
P 
PTH 
RPA 
T 
U 
11 

y 

Equation of state 
Pair correlation function 
High temperature approximation 
Johnson-Zollweg-Gubbins EOS 
Kolafa and Nezbeda EOS 
Lennard-Jones pair potential 
Pressure 
Perturbation Theory 
Random phase approximation 
Absolute temperature 
Internal energy 
Pair potential 
Background correlation function 

Greek Letters 

c 
cr 
/ 1  Chemical potential 

Energy parameter in the pair potential 
Size parameter in the pair potential 
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